数学学习计划

时间:2024-07-13 01:14:20
精选数学学习计划3篇

精选数学学习计划3篇

光阴的迅速,一眨眼就过去了,相信大家对即将到来的工作生活满心期待吧!现在的你想必不是在做计划,就是在准备做计划吧。计划怎么写才能发挥它最大的作用呢?以下是小编整理的数学学习计划3篇,仅供参考,希望能够帮助到大家。

数学学习计划 篇1

首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。

第一阶段复习计划:

复习高数书上册第一章,需要达到以下目标:

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

2.了解函数的有界性、单调性、周期性和奇偶性。

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4.掌握基本初等函数的性质及其图形,了解初等函数的概念。

5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

6.掌握极限的性质及四则运算法则。

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

第二阶段复习计划:

复习高数书上册第二章1-3节,需达到以下目标:

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的'导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

3.了解高阶导数的概念,会求简单函数的高阶导数。

本阶段主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

第三阶段复习计划:

复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:

1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理。

3.掌握用洛必达法则求未定式极限的方法。

4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

本阶段主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

第四阶段复习计划

复习高数书上册第四章 第1-3节。需达到以下目标:

1.理解原函数的概念,理解不定积分的概念。

2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。

本阶段主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

第五阶段复习计划

复习高数书上册第五章第1-3节。达到以下目标:

1.理解定积分的几何意义。

2.掌握定积分的性质及定积分中值定理。

3.掌握定积分换元积分法与定积分广义换元法。

本阶段的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

第六阶段复习计划

复习高数书上册第五章第4节,第六章第2节。达到以下目标:

1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。

2.掌握定积分换元法与定积分广义换元法。会求分段函数的定积分。

3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。

本阶段主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。

数学学习计划 篇2

学习不是一朝一夕的事,古人寒窗十载,才得以有金榜题名的荣耀,现在虽说废除了八股取士,在入大学之前同样有十几年的书要读,读这么长时间书,计划显然必不可少,“宜未雨而绸缪,忘临渴而掘井、”下面说一说如何制定计划。

学习是温故而知新的过程,所以作计划自然也分学习计划与复习计划两种。

首先说一下如何制定学习计划

由于针对高考,所以暂只就高中而谈、从新生入学开始,就应当有明确的目标,考大学,考什么大学,高考中考到什么程度,这是学习计划的第一条:终极目标、然后就是根据这一目标制定远近期计划。

从长期看,一个学期、一个学年都可,但一般以一学期为宜、计划的内容可以包括以下两个方面:1、打算考到的名次,包括保位名次或超出几个名次;2、对总分及各科分数的阶段性要求、这就使你在短期内有了目标,在每次小测验、单元考中向所定的目标靠拢,但切记目标不可定得太高,否则结果如果离目标太远会十分打击自信心。

从短期看,作出一周至一天的计划来,可以使自己对学过的东西有一个更好的掌握、对于一周的计划,每周可以有一至两个重点科目,如果你对知识的渴望超过对升学的热衷,计划中的自由时间可以多一些,反之可以少一些、对于一天的计划来说,要注意对老师所讲内容消化时间的安排,并留出适当的时间以备调整、对于新生来说,全面掌握是十分重要的、总之,远期与近期计划都应符合自身情况,并要结合学习情况进行调整,才能达到它的效果。

下面是复习计划的制定问题

复习计划的制定已是完全针对中考而言的、学完所有的内容后,老师一般会按他出的计划带领同学们复习,而对同学来说,课余时间没有必要按老师的思路做、首先,计划书中要有充足的时间留给基础知识,无论哪一科,基础知识往往比考生忽视,实际上,这才是高分的基石,必须踏实、其次,考试题型训练,熟悉中考,消除手生的感觉,做到熟练解题、第三,留出时间放松心情,这对考前的学生来说必不可少,很多考生就是在冲刺阶段搞坏了身体,以致无法正常发挥的、最后,在临近考试时,回顾基础知识与历届考题应是计划的主要内容,这时计划不要过紧,养足精神备考。

最重要的不是制定而是执行,只要持之以恒,相信同学们都可以考出个好成绩、

数学学习计划 篇3

一、学情分析总体情况:

多数学生已经形成良好的学习习惯,课上能认真听讲,积极思维,课后认真按时完成作业,及时改错。但也有少数学生惰性强,课上不动脑筋思考问题,写作业效率低,不能主动及时改错。

二、简要复习目标:

使学生获得的知识更加巩固,计算能力和估算能力更加提高,能用所学的数学知识解决简单的实际问题,提高学习数学的兴趣,建立学好数学的信心。

三、主要内容学习状况

1、数与代数:口算乘除法,笔算乘除法以及估算学得都很好,认识一个整体的几分之一和几分之几不太熟练,年月日、千米的认识和吨的认识还存在着一些问题。解决问题的办法:;加强连续两次平均分的实际问题训练,用小数加、减法解决一些实际问题,进行求整体的几分之一或几分之几的练习,从实际中了解千米与吨的知识。

2、空间与图形:对生活中常见的平移、旋转、对称现象已初步形成了概念,物体的三视图学得也较好,但面积的单位、计算却还有一些问题。解决问题的办法:多练习一些平移图形的训练,进行与计算面积有关的实际问题训练。

3、统计:统计表与条形统计图学得较好,但求平均数的方法却存在着问题。解决问题的方法:针对学生求平均数时只求出总数而不再去求平均数的现象多进行练习,并让学生懂得什么才是平均数,从而掌握求平均数的方法。

四、采取措施

1、使用新教材,老师和学生都有一个适应的过程,正视自己在教学中的问题,在期末复习中尽最大地努力弥补。

2、重视学生学习习惯的培养(尤其审题习惯),学习方法的指导。

3、老师要准确了解学生知识技能的掌握情况,做到心中有数,才能使复习有针对性、实效性。

4、课上注重知识的整理,基本概念理解到位,比较知识之间的区别与联系,形成知识网络。

5、注重对知识的整合,一题多用。如:一些图形中面积的计算。

6、关注后进生,加强对他们的辅导。

五、复习方法:

讲练结合,点线结合。

(先各个知识点突破,再知识点综合,最后解决生活中的问题。)突出重点,突破难点。

《精选数学学习计划3篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式